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Abstract 

Exact expressions have been found for the probability 
density functions (p.d.f.'s) of the magnitude of the 
normalized structure factor for all the two- 
dimensional and most three-dimensional space 
groups [Part VI: Rabinovich, Shmueli, Stein, Shashua 
& Weiss (1991). Acta Cryst. A47,328-335]. The results 
of that investigation are used in the present article to 
examine some effects of atomic heterogeneity, in the 
various space-group symmetries, on the p.d.f.'s. Some 
typical comparisons are made between p.d.f.'s based 
on the central limit theorem and p.d.f.'s computed 
from exact formulae. In addition, the exact results 
are compared to histograms of simulated values of 
I t~l. It is found that the p.d.f.'s for some space groups 
are influenced rather strongly by the presence of 
outstandingly heavy scatterers, but they are quite 
insensitive to the presence of such scatterers in other 
space groups. The often made general statement 'The 
presence of outstandingly heavy scatterers may invali- 
date the indications of Wilson's statistics' is made 
more precise here, insofar as it depends on the par- 
ticular space group. 

Introduction 

The probability density functions (p.d.f.'s) and other 
statistics of the  magnitude IEI of the normalized struc- 
ture factor have served during the past four decades 
as a conveniently computable means for the resol- 
ution of space-group ambiguities. Expressions for 
these statistics are incorporated into most structure- 
determination packages but these formulations are 
based on the Wilson (1949) statistics, which do not 
account for effects of atomic heterogeneity. The indi- 
cations of these easily computable ideal statistics are 
good guides for the resolution of space-group 
ambiguities, for structures consisting of not too dis- 
similar atoms - irrespective of the space group. 
Howells, Phillips & Rogers (1950) first pointed out 
that the presence of outstandingly heavy atoms may 

cause misleading indications of Wilson (1949) statis- 
tics. This observation was followed by many investi- 
gations into the problem of deriving generalized 
statistics, which allow for the atomic composition as 
well as for space-group symmetry. Much of the early 
work on intensity statistics is summarized in the 
monograph by Srinivasan & Parthasarathy (1976). 
Later work concentrated on explicit introduction of 
space-group symmetry into the available generalized 
intensity statistics (Wilson, 1978; Shmueli, 1979; 
Shmueli & Wilson, 1981, 1983; Shmueli, 1982; 
Shmueli & Kaldor, 1981, 1983). In spite of consider- 
able success with these generalizations, the resulting 
density functions are available as complicated trun- 
cated expansions whose properties and degree of 
convergence are difficult to estimate. Hence they have 
a limited utility in practice. An important turning 
point in this line of research was the recognition by 
Shmueli, Weiss, Kiefer & Wilson (1984) of the fact 
that the p.d.f, of I EI can be expanded in a Fourier 
or a Fourier-Bessel series. The resulting exact 
expressions for the Fourier and Fourier-Bessel 
p.d.f.'s turned out to have excellent convergence 
properties and can be readily computed to any 
accuracy. This technique was used to solve the prob- 
lem of composition dependence for the space groups 
P1 and P i  (Shmueli et al., 1984), as well as for other 
space groups of low symmetry (Shmueli & Weiss, 
1987). The Fourier method was also applied to the 
problem of calculating the p.d.f, when one or more 
non-crystallographic centres of symmetry are present 
in the space group P1 (Shmueli, Weiss & Kiefer, 
1985; Shmueli & Weiss, 1985; Shmueli, Weiss & 
Wilson, 1989) and to the possibility of distribution 
of the scatterers among variable special positions (i.e. 
lines and planes) in most space groups of the mono- 
clinic and orthorhombic systems (Shmueli & Weiss, 
1988). Effects of dispersion in P1, studied earlier in 
the central-limit-theorem approximation by Wilson 
(1980), and generalized by Shmueli & Wilson (1983), 
have recently been re-examined in the Fourier 
approach by Shmueli, Rabinovich & Weiss (1990). It 
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follows that an exactly and readily computable p.d.f. 
for intensity statistics in the space group P1 can now 
be constructed, taking into account the atomic com- 
position, partial or complete hypercentrosymmetry, 
in addition to anomalous scattering. Furthermore, 
this p.d.f, is also computable to any accuracy. 

The desirability of extending these results to higher 
(or arbitrary) space-group symmetries has been 
evident for some time. While the extensions of the 
central limit theorem result (e.g. Shmueli & Wilson, 
1981; Shmueli & Kaldor, 1981) call for the calculation 
of symmetry-dependent moments of the trigono- 
metric structure factor, the functional form of the 
p.d.f. - albeit highly complicated - remaining 
unchanged, the calculation of the coefficients of Four- 
ier p.d.f.'s becomes more complicated analytically 
and numerically, as the symmetry increases. This 
problem was recently examined in some detail and 
characteristic functions for Fourier and Fourier- 
Bessel p.d.f.'s were obtained for the 17 plane groups 
and the first 206 space groups (Rabinovich, Shmueli, 
Stein, Shashua & Weiss, 1991; hereafter denoted by 
RSSSW). We wish, in the present paper, to explain 
how the theoretical results of the preceeding paper, 
Part VI (RSSSW), apply to actual cases as well as to 
summarize the conclusions that emerge from an 
extensive numerical test of these results. Our summary 
will be illustrated by some typical exact p.d.f.'s with 
regard to the presence of an outstandingly heavy atom 
in the asymmetric unit. We recall that by the attribute 
'exact' we mean 'computable to any accuracy'. 

Calculation of Fourier p.d.f.'s of IEI: an example 

In order to illustrate the use of the results of RSSSW, 
we outline the calculation of the exact Fourier rep- 
resentation of the p.d.f, of IEI for the centrosymmetric 
space group I41/a, for the set of reflections with odd 
I. In the absence of significant anomalous dispersion 
the general expression for the relevant p.d.f, is 

p(IEI)=  1+2 E C( o,u)cos( .uo, lEI) , (1) 
u = l  

where a is the reciprocal of the maximum value of 
I EImax and C is the symmetry-dependent Fourier 
coefficient. This coefficient is the product of the 
atomic contributions from the asymmetric unit 

N/16 N/16 

C(Trau)=  H Cj ( r rau)=  H Lj(47rau, Tr/4), (2) 
j = l  j = i  

where N is the number of atoms in the unit cell and 
Lj(4"n'au, ~r/4) is the atomic contribution to the Four- 
ier coefficient, for the space group I41/a and the 
subset of reflections with l = 2n + 1. This contribution 
is given in Table 2 of RSSSW as the atomic charac- 
teristic function Lj(4wj, zr/4); the Fourier coefficients 
are derived from the table by replacing w~, w2 and o~ 

with rrc~u, ~rav and 7rt~(u2+/)2)1/2, respectively. It is 
assumed in the latter derivation that all the atoms are 
confined to general positions, their contributions to 
the structure factor are independent and there is no 
non-crystallographic symmetry. According to 
RSSSW, the atomic contribution to the Fourier 
coefficient for the space group and reflection parity 
considered is given by 

Lj( 4 7ro~u, "rr/4)= j4( 4 7rotunj ) 
OG 

+2 Y'. (--1)kj4(47ro~unj), (3) 
k = l  

where Jk(X) is the Bessel function of the first kind, 
of order k (e.g. Abramowitz & Stegun, 1972) and nj 
is the normalized scattering factor. Only a few terms 
of the series in (3) are required in order to achieve 
good convergence. Standard routines for the compu- 
tation of Bessel functions of any order are readily 
available from popular mainframe-maintained 
mathematical libraries (e.g. IMSL) and may also be 
devised for microcomputers (Press, Flannery, 
Teukolsky & Vetterling, 1986). 

In higher tetragonal and all hexagonal space 
groups, one must make use of numerical integration 
to calculate values of the atomic contributions to the 
Fourier coefficients. Such integrals are conveniently 
computed with the aid of adaptive algorithms [e.g. 
the Romberg method as described by Davis & 
Rabinowitz (1967)]. 

All the p.d.f.'s corresponding to the characteristic 
functions that are given in Table 1 of RSSSW were 
computed with the aid of a Bessel-function package 
from the local mainframe library and subroutine 
D C A D R E  from the mainframe-maintained IMSL 
library, which employs the Romberg adaptive integra- 
tion algorithm. 

Summary of the calculations 

Our calculations are based on an assumed asymmetric 
unit containing fourteen C atoms and one U atom. 
For this composition, we first simulated the distribu- 
tion of [El (cf. Shmueli et al., 1984) using the 
expression 

N/g  

E ( h ) =  Y. n j [~(h)+  irb(h)], (4) 
j = l  

where g is the order of the point group times the 
multiplicity of the Bravais lattice and ~ + irli is the 
relevant (possibly) complex trigonometric structure 
factor. The expressions for ~: and r /were  taken from 
In ternational Tables for X-ray Crystallography (1965) 
and from the revised version of the structure factor 
tables, to appear in Volume B of the new edition of 
International Tables for Crystallography (1991). The 
number of simulated structure factors, from which 
the frequency histogram of I EI was constructed, was 
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kept at 100 000 to ensure a meaningful  compar ison  
with the corresponding theoretical p.d.f.'s. These are 
the exact p.d.f, based on the results of  RSSSW and 
the corresponding (centric or acentric) p.d.f, based 
on Wilson (1949) statistics. The theoretical p.d.f. 's 
and the histogram were then put on the same scale 
and discrepancy factors, an R factor and g 2, were 
evaluated as described by Shmueli  et al. (1984). The 
above procedure was repeated for each space group, 
or class of  space groups, for which the moments  of  
the tr igonometric  structure factor have the same value 
(Shmueli  & Kaldor,  1981, 1983). For some non- 
symmorph ic  space groups these moments  and also 
the characteristic functions may assume several values 
or expressions depending  on the parity of  the reflec- 
tion indices (Shmueli  & Kaldor,  1981, 1983; RSSSW). 

We found excellent agreement  in the compar ison 
between all the s imulated histograms and the corre- 
sponding exact p.d.f. 's, the R factors fall ing in the 
0.01-0.02 range. Apart  from confirming again that 
the Fourier  method works very well, these com- 
parisons constitute a further check on the correctness 
of  the calculations.  There may, however, be large 
discrepancies between the exact p.d.f.'s, based on the 
assumed space-group symmetry  and composi t ion of 
the asymmetr ic  unit, and the ideal (centric or acentric) 
p.d.f. 's based on the central limit theorem (Wilson, 
1949). The quant i ty  closest to a real exper imental  
distr ibution is represented by the histogram of  
frequencies.  

The greatest d iscrepancy between the ideal and 
exact p.d.f. 's is found in the case of  the two triclinic 
space groups, which were the first to be investigated 
and the easiest to treat (Shmueli  et al., 1984). We 
illustrate in Fig. 1 the results obtained for space group 
P1. This is a unique example  of  a centric p.d.f, which, 
because of  a very conspicuous  peak at an intermediate  
]E] value, can be mistaken for an ideal acentric one. 

A similar  but weaker tendency,  which is therefore 
less likely to lead to space-group ambiguit ies,  is found 
in the exact p.d.f. 's for the centrosymmetr ic  space 
groups Fddd with h + k = 4 n ,  k + l = 4 n  and l + h =  
4 n + 2 ,  14~/a with l = 2 n + l  and P3. 

Our calculat ions and their graphical  representa- 
tions also show that exact p.d.f. 's of  a number  of 
non-centrosymmetr ic  space groups tend, in a variety 
of  ways, to the ideal centric p.d.f, and are thus relevant 
to the problem of space-group,  ambiguit ies.  These 
space groups or classes of  space groups are Prom2 
(Cmrn2), P4 (P4~ with l=2n ,  I4~ with l = 2 n + l ) ,  
P4mm (14~md with 2 k + l = 2 n ) ,  P6, P63cm with 
l = 2n + 1, P6cc with l = 2n and P62c (both parities 
of  l). The statistics of  the space groups Prom2 (this 
includes all the space groups i somorphous  to the 
point group ram2) and P6cc are il lustrated in Fig. 2. 
An important  qualif icat ion must be made: the p.d.f. 's 
in Fig. 2, as well as the others ment ioned  in the same 
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Fig. 1. Comparison of p.d.f.'s of IEI for the space group Pi. The 
exact (solid line), ideal (dashed line) and simulated (histogram) 
densities are shown. 
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Fig. 2. Comparison of p.d.f.'s of IEI for the space groups Prom2 
and P6cc. The exact (solid line), ideal (dashed line) and simu- 
lated (histogram) densities are shown. (a) Prom2, (b) P6cc, 
/=2n. 
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connection,  start off from zero but have the peak 
displaced to a small value of  lEI. Since the t rea tment  
of  the intensities of  very weak reflections is usually 
rather  uncertain,  the distribution of  very small IE['s 
may often be distorted or underpopula ted  irrespective 
of  whether  the crystal is centrosymmetr ic  or not. The ~ -  
low end of  the distribution is therefore less reliable 

--< 
for the purpose of  compar ison.  

The p.d.f. 's of  a number  of  centrosymmetr ic  
space groups resemble somewhat  a bicentric one 
(Shmueli ,  Weiss & Kiefer, 1985). An indication of  
such a tendency was a l ready noted by Shmueli  & 
Wilson (1981), who examined the fourth moment  of  
I EI for a series of  space groups and noticed that for 
some space groups such moments  were significantly 
greater than 3 but always smaller  than 4.5 - the fourth 
moment  for an ideal bicentric distribution. The space 
groups or space-group classes belonging to this 
category are Pmmm ( Cmmm, Fddd with h + k=4n 
etc.), P4/m, 14~/a with l=2n, P4/mmm, 14~/amd 
with l=2n, P63/m with l = 2 n + l ,  P6/mcc (both 
parities of  l) and P63/mcm with ! = 2n + 1. The p.d.f. 's 
for the cubic space groups Pn3n with h = 2n, k = 2n, 
l= 2n+ 1, Fm3c with h + k + l = 2 n  + 1 and la3d with 
h=2n, k=2n, l=2n, h + k + l = 4 n + 2  also show a 
similar a l though less emphasized tendency to hyper- 
symmetry.  The statistics for P6/mcc with l = 2n + 1 
shown in Fig. 3, illustrate this behaviour.  ' ~ "  

The exact p.d.f. 's of  several space groups appea r  
to be almost  insensitive to atomic heterogeneity.  This 
is reflected in a good to excellent agreement  of  the 
exact and ideal p.d.f. 's even for the highly 
heterogeneous ClnU asymmetr ic  unit. The space 
group or space-group classes belonging to this 
category are all those i somorphous  to the point  groups 
222 and ~,, 14~/amd with l = 2 n + l ,  space groups 
related to the point group 32, P6222 with ! = 6n, 6n + 1 
and 6 n + 2 ,  and space groups i somorphous  to the 
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Fig. 4. Comparison of p.d.f.'s of IEI for the space group P312. 
The exact (solid line), ideal (dashed line) and simulated 
(histogram) densities are shown. 
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Fig. 3. Comparison of p.d.f.'s of ]El for the space group P6/mcc, 
I = 2n + 1. The exact (solid line), ideal (dashed line) and simu- 
lated (histogram) densities are shown. 
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Fig. 5. Comparison of some p.d.f.'s of I/51 for the space group 
P6~. The exact (solid line), ideal (dashed line) and simulated 
(histogram) densities are shown. (a) P61, l=6n+ 1, (b) P6~, 
l--6n+2. 
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cubic point groups 23 and m3. An example of such 
insensitivity is illustrated in Fig. 4 by the statistics for 
the trigonal P312. 

It should also be pointed out that within some 
non-symmorphic space groups the exact p.d.f.'s may 
differ widely, depending on the parity of the reflection 
indices. The statistics for two out of the four different 
reflection subsets for the space group P6~ are dis- 
played in Fig. 5. 

A remark about the statistics of the cubic space 
groups nos. 207-230, including the various subsets, 
is in order. Exact p.d.f.'s were not formulated in a 
final form for these space groups since the expressions 
appeared rather unwieldy and indicated excessive 
computing effort that might be called for in their 
evaluation. Moreover, comparisons of histograms of 
IEI for a CI4U asymmetric unit with the appropriate 
ideal p.d.f.'s showed that they (the histograms) are 
either insensitive to atomic heterogeneity or display 
a weak tendency to hypersymmetry. It might perhaps 
be interesting to examine the feasibility of construct- 
ing, in such instances, reliable approximate p.d.f.'s 
by the Gram-Char l ier  correction-factor approach 
(e.g. Shmueli & Wilson, 1981; Shmueli, 1982) since 
the departures from ideal behaviour are here rather 
small. 

This research was supported in part by grant no. 
88-00210 from the United States-Israel Binational 
Science Foundation (BSF), Jerusalem, Israel. All the 
computations related to this paper were carried out 
at the Tel Aviv University Computation Center on a 
Cyber 180-990 computer. 
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On Integrating the Techniques of Direct Methods with Anomalous Dispersion. II .  

Statistical Properties of the Two-Phase Structure Invariants 
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Abstract 

Results of a statistical study of probabilistic estimates 
of two-phase structure invariants (TPSI) for Friedel 
pairs in the case of single-wavelength anomalous 
scattering are reported. Numerical analysis of the 
TPSI sign, magnitude and error distributions shows 
that the concise formula for TPSI by probability 
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theory [Hauptman (1982). Acta Cryst. A38, 632-641; 
Giacovazzo (1983). Acta Cryst. A39, 585-592] has 
desirable statistical properties. Computational results 
for the known structures of cocaine methiodide (N- 
methylcocaine iodide) and of cytochrome c550 and its 
PtCI4 z- derivative show that when IEI values are large 
most of the signs of the TPSI are correctly deter- 
mined - for IEI> 1.0, 90% or more of the TPSI signs 

O 1991 Ii~ternational Union of Crystallography 


